GOVERNMENT POLYTECHNIC, NABARANGPUR ## DEPARTMENT OF MATHEMATICS AND SCIENCE | Discipline: Mechanical,civil | Semester: | Name of the Teaching Faculty: DEEPAK RANJAN PATTNAIK | |--|--|--| | ,electrical ,
automobile | | | | Subject: ENGINEERING MECHANICS (T.h 4) | No. of
days/per
week class
allotted: 4 | Semester From date: 28/04/2021 To Date:10/07/2021 | | (10111) | | No. of Weeks:15 | | | CO1: Compu | te the force, moment & their application through solving of simple | ## COURSE OUTCOMES CO1: Compute the force, moment & their application through solving of simple problems on coplanar forces. CO2: Understand the concept of equilibrium of rigid bodies. CO3: Know the existence of friction & its applications through solution of problems on above. CO4:Locate the C.G. & find M.I. of different geometrical figures. CO5: Know the application of simple lifting machines. C06: Understand the principles of dynamics. | Week | Class Day | Theory/Practical Topics | |-----------------|-----------------|--| | 1 ST | 1 ST | FUNDAMENTALS OF ENGINEERING MECHANICS 1.1 Fundamentals. Definitions of Mechanics, Statics, Dynamics, Rigid Bodies, | | | 2 ND | 1.2 Force Force System. Definition, Classification of force system according to plane & line of action. Characteristics of Force & effect of Force. Principles of Transmissibility & | | | | Principles of Superposition. Action & Reaction Forces & concept of Free Body Diagram. | | | 3 RD | Characteristics of Force & effect of Force. Principles of Transmissibility & Principles of Superposition. Action & Reaction Forces & concept of Free Body Diagram. | | | 4 TH | 1.3 Resolution of a Force. Definition, Method of Resolution, Types of Component forces, Perpendicular components & non-perpendicular components. (contd) | | 2 ND | 1 st | QUIZ & ASSIGNMENT - I | | | 2 ND | 1.3 Resolution of a Force. Definition, Method of Resolution, Types of Component forces, Perpendicular components & non-perpendicular components. | |-----------------|-----------------|--| | | 3 RD | 1.4 Composition of Forces. Definition, Resultant Force, Method of composition of forces, (contd) | | | 4 TH | 1.4 Composition of Forces. Definition, Resultant Force, Method of composition of forces, | | 3 RD | 1 ST | 1.4.1 Analytical Method such as Law of Parallelogram of forces & method of resolution.(contd) | | | 2 ND | QUIZ & ASSIGNMENT - II | | | 3 RD | 1.4.1 Analytical Method such as Law of Parallelogram of forces & method of resolution | | | 4 TH | 1.4.2. Graphical Method. Introduction, Space diagram, Vector diagram, Polygon law of forces. (contd) | | 4 TH | 1 ST | Solved numericals | | | 2 ND | 1.4.2. Graphical Method. Introduction, Space diagram, Vector diagram, Polygon law of forces. | | | 3 RD | 1.4.3 Resultant of concurrent, non-concurrent & parallel force system by Analytical & Graphical Method(contd) | | | 4 TH | 1.4.3 Resultant of concurrent, non-concurrent & parallel force system by Analytical & Graphical Method | | 5 ^{**} | 1 st | 1.5 Moment of Force. Definition, Geometrical meaning of moment of a force, measurement of moment of a force & its S.I units. Classification of moments according to direction of rotation, sign convention, Law of moments, Varignon's Theorem, (contd) | | | 2 ND | 1.5 Moment of Force. Definition, Geometrical meaning of moment of a force, measurement of moment of a force & its S.I units. Classification of moments according to direction of rotation, sign convention, Law of moments, Varignon's Theorem, | | | 3 RD | Couple – Definition, S.I. units, measurement of couple, properties of couple. | | | 4 TH | 2. EQUILIBRIUM 2.1 Definition, condition of equilibrium, Analytical & Graphical conditions of equilibrium for concurrent, non-concurrent & Free Body Diagram. | | | | (contd) | |-----------------|-----------------|---| | $6^{ m TH}$ | 1 ST | 2. EQUILIBRIUM 2.1 Definition, condition of equilibrium, Analytical & Graphical conditions of equilibrium for concurrent, non-concurrent & Free Body Diagram. | | | 2 ND | 2.2 Lami's Theorem – Statement, Application for solving various | | | | engineering problems. (contd) | | | 3 RD | 2.2 Lami's Theorem – Statement, Application for solving various engineering problems. | | | 4 TH | 3. FRICTION 3.1 Definition of friction, Frictional forces, Limiting frictional force, Coefficient of Friction. | | 7 TH | 1 ST | Angle of Friction & Repose, Laws of Friction, Advantages & Disadvantages of Friction. | | | 2 ND | 3.2 Equilibrium of bodies on level plane – Force applied on horizontal & inclined plane (up &down). (contd) | | | 3 RD | .3.2 Equilibrium of bodies on level plane – Force applied on horizontal & inclined plane (up &down). | | | 4 TH | QUIZ & ASSIGNMENT - IV | | 8 TH | 1 ST | 3.3 Ladder, Wedge Friction. | | | 2 ND | 4. CENTROID & MOMENT OF INERTIA 4.1 Centroid – Definition, Moment of an area about an axis, centroid of geometrical figures such as squares, rectangles, triangles, circles, semicircles & quarter circles, centroid of composite figures.(contd) | | | 3 RD | 4. CENTROID & MOMENT OF INERTIA 4.1 Centroid – Definition, Moment of an area about an axis, centroid of geometrical figures such as squares, rectangles, triangles, circles, semicircles & quarter circles, centroid of composite figures. | | | 4 TH | 4.2 Moment of Inertia – Definition, Parallel axis & Perpendicular axis Theorems. M.I. of plane lamina & different engineering sections.(contd) | | 9тн | 1 ST | 4.2 Moment of Inertia – Definition, Parallel axis & Perpendicular axis Theorems. M.I. of | | | | plane lamina & different engineering sections. | |------------------|-----------------|--| | | | plane lamina a amorom originooning sections. | | | 2^{ND} | SOLVED NUMERICALS | | | 3 RD | 5. SIMPLE MACHINES 5.1 Definition of simple machine, velocity ratio of simple and compound gear | | | | train, explain simple & compound lifting machine, define M.A, V.R. & Efficiency & State the relation between them, State Law of Machine, Reversibility | | | | of Machine, Self Locking Machine (CONTD) | | | 4 TH | 5. SIMPLE MACHINES5.1 Definition of simple machine, velocity ratio of simple and compound gear | | | | train, explain simple & compound lifting machine, define M.A, V.R. & Efficiency | | | | & State the relation between them, State Law of Machine, Reversibility of | | | | Machine, Self Locking Machine | | 10 TH | 1 st | REVISION. | | | 2^{ND} | QUIZ & ASSIGNMENT - V | | | 3^{RD} | 5.2 Study of simple machines – simple axle & wheel, single purchase | | | | crab winch & double purchase crab winch, Worm & Worm Wheel, Screw Jack.(CONTD) | | | 4 TH | 5.2 Study of simple machines – simple axle & wheel, single purchase crab winch & double purchase crab winch, Worm & Worm Wheel, Screw Jack | | 11 TH | 1 ST | 5.3 Types of hoisting machine like derricks etc, Their use and working principle. No problems. | | | 2 ND | SOLVED NUMERICALS | | } | 3 RD | SOLVED NUMERICALS | | | 4 TH | 6. DYNAMICS | | 12 [™] | 1 st | 6.1 Kinematics & Kinetics, Principles of Dynamics, Newton's Laws of Motion, Motion of Particle acted upon by a constant force, (CONTD) | | | 2 ND | 6.1 Kinematics & Kinetics, Principles of Dynamics, Newton's Laws of Motion, Motion of Particle acted upon by a constant force, | | | 3 RD | Equations of motion, DeAlembert's Principle. | | | 4 TH | QUIZ & ASSIGNMENT - VI | | 13 TH | 1 ST | 6.2 Work, Power, Energy & its Engineering Applications, Kinetic & Potential energy & its application.(CONTD) | | | 2^{ND} | 6.2 Work, Power, Energy & its Engineering Applications, Kinetic & | |------------------|-----------------|--| | | | Potential energy | | | | & its application. | | | 3 RD | SIMPLE NUMERICAL | | | 4 TH | SIMPLE NUMERICAL | | 14 TH | 1 ST | 6.2 Work, Power, Energy & its Engineering Applications, Kinetic & Potential energy | | | | & its application | | | 2 ND | NUMERICALS ON FREE BODY DIAGRAM | | | 3 RD | REVISION | | | 4 TH | 6.3 Momentum & impulse, conservation of energy & linear momentum, (CONTD) | | 15 TH | 1 ST | 6.3 Momentum & impulse, conservation of energy & linear momentum, | | | 2 ND | SOLVED NUMERICALS | | | 3 RD | collision of elastic bodies, and Coefficient of Restitution. | | | 4 TH | REVISION | ## **LEARNING RESOURCES:** - 1. Engineering Mechanics by A.R. Basu (TMH Publication Delhi) - 2. Engineering Machines Basudev Bhattacharya (Oxford University Press). - 3. Text Book of Engineering Mechanics R.S Khurmi (S. Chand). - 4. Applied Mechanics & Strength of Material By I.B. Prasad. - 5. Engineering Mechanics By Timosheenko, Young & Rao. - 6. Engineering Mechanics Beer & Johnson (TMH Publication). Sign. Of Faculty concerned Sign. Of HOD I/C Principal